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Abstract—Recent approaches in robot perception follow the in-
sight that perception is facilitated by interaction with the environ-
ment. These approaches are subsumed under the term Interactive
Perception (IP). This view of perception provides the following ben-
efits. First, interaction with the environment creates a rich sensory
signal that would otherwise not be present. Second, knowledge of
the regularity in the combined space of sensory data and action
parameters facilitates the prediction and interpretation of the sen-
sory signal. In this survey, we postulate this as a principle for robot
perception and collect evidence in its support by analyzing and cat-
egorizing existing work in this area. We also provide an overview
of the most important applications of IP. We close this survey by
discussing remaining open questions. With this survey, we hope
to help define the field of Interactive Perception and to provide a
valuable resource for future research.

Index Terms—Autonomous systems, cognitive robotics, robot
learning, robot vision systems.

I. INTRODUCTION

THERE is compelling evidence that perception in humans
and animals is an active and exploratory process [1]–[3].

Even the most basic categories of biological vision seem to be
based on active visual exploration, rather than on the analysis
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Fig. 1. Mechanical system where movement of Kitten A is replicated onto
Kitten P. Both kittens receive the same visual stimuli. Kitten A controls the
motion, i.e., it is active. Kitten P is moved by Kitten A, i.e., it is passive. Only
the active kittens developed meaningful visually guided behavior that was tested
in separate tasks. Figure adapted from [4].

of static image content. For example, Nöe [3] argues that the
visual category circle or round cannot be based on the direct
perception of a circle, as 1) we rarely look at round objects from
directly above and 2) the projection of a circle onto our retina is
not a circle at all. Instead, we perceive circles by the way their
projection changes in response to eye movements.

Held and Hein [4] analyzed the development of visually
guided behavior in kittens. They found that this development
critically depends on the opportunity to learn the relationship
between self-produced movement and concurrent visual feed-
back. The authors conducted an experiment with kittens that
were only exposed to daylight when placed in the carousel de-
picted in Fig. 1. Through this mechanism, the active kittens (A)
transferred their own deliberate motion to the passive kittens
(P) that were sitting in a basket. Although both types of kittens
received the same visual stimuli, only the active kittens showed
meaningful visually guided behavior in test situations.

Gibson [5] showed that the physical interaction further aug-
ments perceptual processing beyond what can be achieved by
deliberate pose changes. In the specific experiment, human
subjects had to find a reference object among a set of irregu-
larly shaped, three-dimensional (3-D) objects (see Fig. 2). They
achieved an average accuracy of 49% if these objects were
shown in a single image. This accuracy increased to 72% when
subjects viewed rotating versions of the objects. They achieved
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Fig. 2. Set of irregularly shaped objects among which subjects had to find a
reference object. Subjects achieved near perfect performance when they could
touch and rotate these objects as opposed to just looking at them in a static pose.
Figure adapted from [5, p. 124] with permission.

nearly perfect performance (99%) when touching and rotating
the objects in their hands.

These three examples illustrate that biological perception and
perceptually guided behavior intrinsically rely on active explo-
ration and knowledge of the relation between action and sensory
response. This contradicts our introspection, as we just seem to
passively see. In reality, visual perception is similar to haptic
exploration. “Vision is touch-like” [3, p. 73] in that, perceptual
content is not given to the observer all at once but only through
skillful, active looking.

This stands in stark contrast to how perception problems are
commonly framed in machine vision. Often, the aim is to se-
mantically annotate a single image while relying on a minimum
set of assumptions or prior knowledge. These requirements ren-
der the considered perception problems underconstrained and
thereby make them very hard to solve.

The most successful approaches learn models from datasets
that contain hundreds of thousands of semantically annotated
static images, such as Pascal VOC [6], ImageNet [7], or
Microsoft COCO [8]. Recently, deep learning based approaches
led to substantial progress by being able to leverage these large
amounts of training data. In these methods, data points pro-
vide the most important source of constraints to find a suitable
solution to the considered perception problem. The success of
these methods over more traditional approaches suggests that
previously considered assumptions and prior knowledge did not
correctly or sufficiently constrain the solution space.

Different from disembodied Computer Vision algorithms,
robots are embodied agents that can move within the envi-
ronment and physically interact with it. Similar to biological
systems, this creates rich and more informative sensory signals
that are concurrent with the actions and would otherwise not be
present. There is a regular relationship between actions and their
sensory response. This regularity provides the additional con-
straints that simplify the prediction and interpretation of these
high-dimensional signals. Therefore, robots should exploit any
knowledge of this regularity. Such an integrated approach to per-
ception and action may reduce the requirement of large amounts

of data and thereby provide a viable alternative to the current
data-intensive approaches toward machine perception.

II. INTERACTIVE PERCEPTION

Recent approaches in robot perception are subsumed by the
term Interactive Perception (IP). They exploit any kind of force-
ful interaction with the environment to simplify and enhance
perception. Thereby, they enable robust perceptually guided ma-
nipulation behaviors. IP has two benefits. First, physical inter-
action creates a novel sensory signal that would otherwise not
be present. Second, by exploiting knowledge of the regularity
in the combined space of sensory data and action parameters,
the prediction and interpretation of this novel signal becomes
simpler and more robust. In this section, we will define what we
mean by forceful interaction. Furthermore, we explain the two
postulated benefits of IP in more detail.

A. Forceful Interactions

Any action that exerts a potentially time-varying force upon
the environment is a forceful interaction. A common way of
creating such an interaction is through physical contact that
may be established for the purpose of moving the agent (e.g., in
legged or wheeled locomotion), for changing the environment
(e.g., to open a door or pushing objects on a table out of the
way), or for exploring environment properties while leaving
it unchanged (e.g., by sliding along a surface to determine its
material). It may also be a contact-free interaction that is due
to gravitational or magnetic forces or even lift. An interaction
may only be locally applied to the scene (e.g., through pushing
or pulling a specific object) or it may affect the scene globally
(e.g., shaking a tray with objects standing on it). This interaction
can be performed either by the agent itself or by any other entity,
e.g., a teacher to be imitated or someone who demonstrates an
interaction through kinesthetic teaching.

In this survey, we are interested in approaches that go beyond
the mere observation of the environment toward approaches
that enable its Perceptive Manipulation.1 Therefore, we focus
on physical interactions for the purpose of changing the envi-
ronment or for exploring environment properties while leav-
ing it unchanged. We are not concerned with interactions for
locomotion and environment mapping.

B. Benefits of IP

Create Novel Signals (CNS): Forceful interactions create
novel, rich sensory signals that would otherwise not be present.
These signals are beneficial for estimating the quantities that are
relevant to manipulation problems, such as haptic, audio, and
visual data correlated over time. Relevant quantities include
object weight, surface material, or rigidity.

Action Perception Regularity (APR): Forceful interactions re-
veal regularities in the combined space (S × A × t) of sensor
information (S) and action parameters (A) over time (t). This

1We consider Perceptive Manipulation to be the equivalent term to IP. This
emphasizes the blurred boundary that is traditionally drawn between manipula-
tion and perception.
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Fig. 3. Summary of how IP relates to other perception approaches regarding
S × A × t. F stands for forceful interaction and ¬F for actions that only
manipulate the parameters of the sensory apparatus and not the environment.

regularity is constituted by the repeatable, multimodal sensory
data that is created when executing the same action in the same
environment. Not considering the space of actions amounts to
marginalizing over them. The corresponding sensory signals
would then possess a significantly higher degree of variation
compared to the case where the regularity in S × A × t is
taken into account. Therefore, despite S × A × t being much
higher dimensional, the signal represented in this space has more
structure.

Using the Regularity: Knowing this regularity corresponds
to understanding the causal relationship between action and sen-
sory response given specific environment properties. Thereby,
it allows us to

1) predict the sensory signal given knowledge about the action
and environment properties;

2) update the knowledge about some latent properties of the
environment by comparing the prediction to the observation;
and

3) infer the action that has been applied to generate the ob-
served sensory signal given some environment properties.

These capabilities simplify perception but also enable optimal
action selection.

Learning the Regularity: Learning these regularities corre-
sponds to identifying the causal relationship between action and
sensory response. This requires information about the action that
produced an observed sensory effect. If the robot autonomously
interacts with the environment, this information is automatically
available. Information about the action can also be provided
by a human demonstrator.

III. HISTORICAL PERSPECTIVE

In robotics, the research field of Active Perception (AP) pio-
neered the insight that perception is active and exploratory. In
this section, we relate IP to AP. Additionally, we discuss the
relation of IP to other perception approaches that neglect either
the sensory or action space in S × A × t. Fig. 3 summarizes
this section.

A. Sensorless Manipulation

This approach to perception does not require any sensing. It
aims at finding a sequence of actions that brings the system of
interest from an unknown into a defined state. Therefore, after

performing these actions, the system state can be considered
as perceived. This kind of sensorless manipulation was demon-
strated first by Erdmann and Mason [9], who used it for orienting
a planar part that is randomly dropped onto a tray. The goal of
the proposed algorithm is to generate a sequence of tray tilt-
ing actions that uniquely moves the part into a goal orientation
without receiving sensor feedback or knowing the initial state.
It uses a simple mechanical model of sliding and information on
how events like collisions with walls reduce the number of pos-
sible part orientations. More recently, Dogar et al. [10] extend
this line of thought to grasping. The authors plan for the best
push-grasp such that the object of interest has a high probability
of moving into the gripper while other objects are pushed away.
The plan is then executed open loop without taking feedback of
the actual response of the environment into account.

We argue that IP critically depends on representing a signal
in the combined space of sensory information and action pa-
rameters over time. Sensorless manipulation is similar in that
it also requires a model of how actions funnel the uncertainty
about the system state into a smaller region in state space. How-
ever, different from the approaches in this survey, it does not
require sensory feedback as it assumes that the uncertainty can
be reduced to the required amount only through the actions. For
complex dynamical systems, this may not always be the case or
a sufficiently expressive forward model may not be available.

B. Perception of Visual Data

The vast research area of Computer Vision focuses on inter-
preting static images, video, or other visual data. The majority of
approaches completely neglect the active and exploratory nature
of human and robot perception. Nevertheless, there are exam-
ples in the Computer Vision literature that show how exploiting
the regularity in S × A × t simplifies perception problems. The
first example aims at human activity recognition in video. It is
somewhat obvious that this task becomes easier when observing
the activity over a certain course of time. Less obvious is the
result by Kjellström et al. [11] who showed that classifying ob-
jects is easier if they are observed while being used by a person.
More recently, Cai et al. [12] support these results. They show
that recognizing manipulation actions in single images is much
easier when modeling the associated grasp and object type in a
unified model.

Another example considers the problem of image restora-
tion. Xue et al. [13] exploit whole image sequences to separate
obstructing foreground like fences or window reflections from
the main subject of the images, i.e., the background. This would
be a very hard problem if only a single image were given or with-
out the prior knowledge of the relation between optical flow and
depth.

Aloimonos et al. [14] show how challenging vision prob-
lems, such as shape from shading or structure from motion, are
easier to solve with an active than a passive observer. Given
known camera motion and associated images, the particular
problem can be formulated such that it has a unique solution
and is linear. The case of the passive observer usually requires
additional assumptions or regularization and sometimes nonlin-
ear optimization.
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C. Active Perception

In 1988, Bajcsy [15] introduced AP as the problem of intel-
ligent control strategies applied to the data acquisition process.
Ballard [16] and Aloimonos et al. [14] further analyzed this
concept for the particular modality of vision. In this context, re-
searchers developed artificial vision systems with many degrees
of freedom [17]–[19] and models of visual attention [20], [21]
that these active vision systems could use for guiding their gaze.

Recently, Bajcsy et al. [22] revisited AP giving an excellent
historical perspective on the field and a new, broader definition
of an active perceiver based on decades of research:

An agent is an active perceiver if it knows why it wishes to sense,
and then chooses what to perceive, and determines how, when and
where to achieve that perception.

The authors identify the why as the central and distinguishing
component to a passive observer. It requires the agent to reason
about so called Expectation-Action tuples to select the next best
action. The expected result of the action can be confirmed by
its execution. Expectation-Action tuples capture the predictive
power of the regularity in S × A × t to enable optimal action
selection.

1) Relation to IP: The new definition of AP is not only re-
stricted to vision. However, the majority of approaches gathered
under the term of AP consider vision as the sole modality and
the manipulation of extrinsic or intrinsic camera parameters
as possible actions. This is also reflected by the choice of ex-
amples in [22]. The focus on the visual sense has several impli-
cations for AP in relation to IP. First, an active perceiver with
the ability to move creates a richer and more informative visual
signal (e.g., from multiple viewpoints or when zooming) that
would otherwise not be present. However, this may not provide
all relevant information, especially not those required for manip-
ulation problems. Natale et al. [23] emphasize that only through
physical interaction, a robot can access object properties that
otherwise would not be available (like weight, roughness, or
softness).

Second, as shown in [14], we have very good understanding
of multiview and perspective geometry that can be leveraged
to formulate a vision problem in such a way that its solution
is simple and tractable. However, when it comes to predicting
the effect of physical interaction that does not only change the
viewpoint of the agent on the environment, but the environ-
ment itself, we are yet to develop rich, expressive, and tractable
models.

Finally, AP mainly focuses on simplifying challenging per-
ception problems. However, a robot should also be able to ma-
nipulate the environment in a goal-directed manner. Sandini
et al. [24, p.167] formulate this as a difference in how visual
information is used: In AP, it is mainly devoted to exploration
of the environment, whereas in IP, it is also used to monitor the
execution of motor actions.

2) Early Examples of IP: There are a number of early ap-
proaches within the area of AP that exploit forceful interaction
with the environment and are therefore early examples for IP
approaches. Tsikos and Bajcsy [25], [26] propose to use a robot
arm to make the scene simpler for the vision system through
actions like pick, push, and shake. The specific scenario is the

separation of random heaps of objects into sets of similar shapes.
Bajcsy [27] and Bajcsy and Sinha [28] propose the Looker and
Feeler system that allows to perform material recognition of
potential footholds for legged locomotion. The authors hand-
design specific exploration procedures of which the robot ob-
serves the outcome (visually or haptically) to determine material
attributes. Salganicoff and Bajcsy [29] show how the mapping
between observed attributes, actions, and rewards can be learned
from training data gathered during real executions of a task.
Sandini et al. [24, Sec. 3] propose to use optical flow analysis
of the object motion while it is being pushed. The authors show
that through this analysis, they can retrieve both geometrical
and physical object properties that can then be used to adapt the
action.

D. Active Haptic Perception

Haptic exploration of the environment relies on haptic sens-
ing that requires contact with the environment. Interpretation
of a sequence of such observations is part of IP as it requires
a forceful and time-varying interaction. The interpretation of
an isolated haptic frame without temporal information is simi-
lar to approaches in Computer Vision, such as semantic scene
understanding from static images [30].

Early approaches that use touch in an active manner are ap-
plied to problems, such as reconstructing shape from touch [31],
recognizing objects through tracing their surface [32], or explor-
ing texture and material properties [31]. The complementary
nature of vision and touch has been explored by Allen and
Bajscy [33] in reconstructing a 3-D object shape. A more com-
plete review of these early approaches toward active haptic per-
ception is contained in [22] and [30].

More recent examples include [23] to learn haptic object
representations, [34]–[36] for object detection and pose estima-
tion, [37]–[39] for reconstructing the shape of objects or the
environment, and [40]–[42] for texture classification or descrip-
tion. The most apparent difference of these recent approaches
to earlier work lies in the use of machine learning techniques to
either automatically find suitable exploration strategies, to learn
suitable feature representations or to better estimate different
quantities.

In general, active haptic perception requires deliberate contact
interaction but the majority of the cases do not aim at chang-
ing the environment. Instead, for simplification, objects or the
environment are often assumed to be rigid and static during
contact.

IV. APPLICATIONS OF IP

IP methods may be applied to achieve an estimation or a
manipulation goal. Currently, the vast majority of IP approaches
estimate some quantity of interest through forceful interaction.
Other IP approaches pursue either a grasping or manipulation
goal. This means that they aim to manipulate the environment to
bring it into a desired state. Usually, this includes the estimation
of quantities that are relevant to the manipulation task.

Existing IP approaches can be broadly grouped into ten ma-
jor application areas, as visualized in Fig. 4. In this section, we
briefly describe each of these areas. For the first three applica-
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Fig. 4. Paper categorization based on application areas. Papers that address multiple application areas lie on the boundary between those applications, e.g., [57]
and [81].

Fig. 5. Three situations in which a robot (indicated by the stereo camera and
viewing cones) tries to estimate the articulation model of two Lego blocks on
a table. The situations differ in the amount of information the robot has access
to. [Left] The robot can only change the viewpoint to obtain more information.
[Center] The robot can observe a rich sensory signal caused by a person lifting
the top Lego block. [Right] The robot can interact with the scene and observe the
resulting sensory signal. Therefore, it has more information about the specific
interaction. Only in the rightmost situation, the articulation model can be reliably
identified.

tions (object segmentation, articulation model estimation, and
object dynamics learning), we use a couple of simple examples
(see Figs. 5 and 6) to allow the reader to better appreciate the
benefits of IP and understand its distinction to AP.

A. Object Segmentation

Object segmentation is a difficult problem and, in the area
of Computer Vision, it is often performed on single images

Fig. 6. Three situations in which a robot (indicated by the stereo camera and
viewing cones) tries to estimate the weight of a sphere. The situations differ
in the amount of information the robot has access to. [Left] The robot can
only change the viewpoint to obtain more information. [Center] The robot can
observe a rich sensory signal caused by a person pushing the sphere. [Right]
The robot can push the sphere itself and observe the resulting sensory signal,
i.e., where the sphere comes to rest. In the last situation, it has more information
about the specific push force. Only in the rightmost situation, the weight of the
sphere can be reliably unidentified.

[104]–[106]. To illustrate the challenges, consider the simple
example scenario depicted in Fig. 5. Two Lego blocks are firmly
attached to the table. The robot is supposed to estimate the num-
ber of objects on the table. When the robot is a passive observer
of the scene as in Fig. 5 [Left], it would be very challenging to
estimate the correct number of Lego blocks on the table without
incorporating a lot of prior knowledge. The situation does not
improve in this static scenario even with more sensory data from
different viewpoints or after zooming in.
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When the robot observes another agent interacting with the
scene, as shown in Fig. 5 [Center], it will be able to segment
the Lego blocks and correctly estimate the number of objects in
the scene. This is an example of how forceful interactions can
create rich sensory signals that would otherwise not be present
(CNS). The new evidence in form of motion cues simplifies the
problem of object segmentation.

The ability to interact with the scene allows a robot to also
autonomously generate more informative sensory information,
as visualized in Fig. 5 [Right]. Reasoning about the regularity in
S × A × t may lead to even better segmentation since the robot
can select actions that are particularly well suited for reducing
the segmentation uncertainty (APR).

For these reasons, object segmentation has become a very
popular topic in IP. For example, Fitzpatrick and Metta [53]
and Metta and Fitzpatrick [54] are able to segment the robot’s
arm and the objects that were moved in a scene. Gupta and
Sukhatme [50] and Chang et al. [56] use predefined actions to
segment objects in cluttered environments. van Hoof et al. [48]
can probabilistically reason about optimal actions to segment a
scene.

B. Articulation Model Estimation

Another problem that is simplified through IP is the estimation
of object articulation mechanisms. The robot has to determine
whether the relative movement of two objects is constrained
or not. Furthermore, it has to understand whether this potential
constraint is due to a prismatic or revolute articulation mech-
anism and what the pose of the joint axis is. Fig. 5 [Left]
visualizes an example situation in which the robot has to es-
timate the potential articulation mechanism between two Lego
blocks, given only visual observations of a static scene. This is
almost impossible to estimate from single images without in-
cluding a lot of prior semantic knowledge. It is also worth noting
that this situation is not improved if gathering more information
from multiple viewpoints of this otherwise static scene.

In Fig. 5 [Center], the robot observes an agent lifting the
top-most lego block. This is another example of how forceful
interactions create a novel, informative sensory signal (CNS). In
this case, it is a straight-line, vertical motion of one Lego block.
It provides evidence in favor of a prismatic joint in between
these two objects (although, in this case, this is still incorrect).

When the robot autonomously interacts with the scene, it cre-
ates these informative sensory signals not only in the visual but
also haptic sensory modality. These data are strongly correlated
with a particular articulation mechanism. Fig. 5 [Right] visual-
izes this scenario. By leveraging knowledge of the regularity in
S × A × t, the robot can also form a correct hypothesis of the
articulation model (APR). The Lego blocks are rigidly attached
at first, but when the robot applies enough vertical force to the
top-most Lego block, there is a sensory evidence for a free body
articulation model.

In the literature, there are offline estimation approaches to-
ward this problem that either rely on fiducial markers [95]
or markerless tracking [99], [103]. There are also online ap-
proaches [96] where the model is estimated during the move-
ment. Most recent methods include reasoning about actions

to actively reduce the uncertainty in the articulation model
estimates [98], [100], [101].

C. Object Dynamics Learning and Haptic Property Estimation

IP has also made major inroads into the challenge of esti-
mating haptic and inertial properties of objects. Fig. 6 shows
a simple example scenario that shall serve to illustrate why IP
simplifies the problem. Consider a sphere that is lying on a ta-
ble. The robot is supposed to estimate the weight of the sphere
given different sources of information. We assume that the robot
knows the relationship between push force, distance the sphere
traveled, and sphere weight. In the trivial static scene scenario
illustrated in Fig. 6 [Left], the robot is not able to estimate any
of the inertial properties. It encounters similar problems as in
the previous example (see Fig. 5) even if it was able to change
the viewpoint.

In Fig. 6 [Center], the robot can observe the motion of the
sphere that is pushed by a person. Now, the robot can easily
segment the ball from the table due to the additional sensory
signal that was not present before (CNS). However, it remains
very difficult for the robot to estimate the inertial properties of
the sphere because it does not know the strength of the push.
Without this information, the known regularity in S × A × t
cannot be exploited. The robot will only be able to obtain a
very uncertain estimate of the sphere weight because it needs
to marginalize over all the possible forces the person may have
applied.

In Fig. 6 [Right], the robot interacts with the sphere. It can
control the push force that is applied and observe the resulting
distance at which the sphere comes to rest. Given the knowl-
edge of the strength of the push, it can now exploit the known
associations between actions and sensory responses to estimate
the spheres inertial properties (APR).

There are several examples that leverage the insight that IP
enables the estimation of haptic and inertial properties. For ex-
ample, in [92] and [42], it has been shown that surface and
material properties of objects can be more accurately estimated
if the robot’s haptic sensor is moved along the surface of the
object.

Atkeson et al. [75] and Zhang and Trinkle [76] move the
object to estimate its inertial properties or other parameters of
object dynamics, which are otherwise unobservable.

D. Object Recognition or Categorization

Approaches to detect object instances or objects of a specific
category have to learn the appearance or shape of these objects
under various conditions. There are many challenges in object
recognition or categorization that make this task very difficult
given only a single input image. A method has to cope with
occlusions, different lighting conditions, scale of the images,
just to name a few. State-of-the-art approaches in Computer
Vision, for e.g., [107] and [108], require enormous amounts of
training data to handle these variations.

IP approaches allow a robot to move objects and hence re-
veal previously hidden features. Thereby, it can resolve some of
the aforementioned challenges autonomously and may alleviate
the need for enormous amounts of training data. Example ap-
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proaches that perform object segmentation and categorization
can be found in [46] and [57]. The challenge of object recogni-
tion/categorization has been tackled by Sinapov et al. [59] and
Hausman et al. [61].

E. Multimodal Object Model Learning

Learning models of rigid objects (RO), articulated objects
(AO), and deformable objects (DO) is a central problem in the
area of Computer Vision. In the majority of the cases, the model
is learned or built from multiple images of the same object or
category of objects. Once the model is learned, it can be used to
find the object in new, previously unseen contexts.

A robot can generate the necessary data through interaction
with the environment. For example, Krainin et al. [88] present
an approach where a robot autonomously builds an object model
while holding the object in its hand. The object model is com-
pleted by executing actions informed by next best view planning.
Kenney et al. [55] push an object on the plane and accumulate
visual data to build a model of the object.

There are also approaches that build an object model from
haptic sensory data, for e.g., Dragiev et al. [37]. Allen and Bajscy
[33], Bohg et al. [39], Ilonen et al. [89], and Björkman et al. [90]
show examples that initialize a model from visual data and then
further augment it with tactile data. Sinapov et al. [59] present a
method where a robot grasps, lifts, and shakes objects to build a
multimodal object model.

F. Object Pose Estimation

IP has also been applied to the problem of object pose es-
timation. Related approaches focus on reducing object pose
uncertainty by either touching or moving it.

Koval et al. [78] employ manifold particle filters for this
purpose. Javdani et al. [36] use information-theoretic criteria,
such as information gain, to actively reduce the uncertainty of
the object pose. In addition to reducing uncertainty, they also
provide optimality guarantees for their policy.

G. Grasp Planning

Cluttered scenes and premature object interactions used to
be considered as obstacles for grasp planning that had to be
avoided by all means. In contrast, IP approaches in this domain
take advantage of the robot’s ability to move objects out of the
way or to explore them to create more successful plans even in
clutter or under partial information.

Hsiao et al. [84] use proximity sensors to estimate the lo-
cal surface orientation to select a good grasp. Dragiev et al.
[87] devise a grasp controller for objects of unknown shape,
which combines both exploration and exploitation actions. Ob-
ject shape is represented by a Gaussian process implicit surface.
Exploration of the shape is performed using tactile sensors on
the robot hand. Once the object model is sufficiently well known,
the hand does not prematurely collide with the real object during
grasping attempts.

H. Manipulation Skill Learning

In some cases, the goal of IP is to accomplish a particular
manipulation skill. This manipulation skill is generally a com-
bination of some of the prespecified goals.

To learn a manipulation skill, Pastor et al. [65] and Kappler
et al. [66] represent the task as a sequence of demonstrated be-
haviors encoded in a manipulation graph. This graph provides a
strong prior on how the actions should be sequenced to accom-
plish the task. Lee et al. [64] use a set of kinesthetic demon-
strations to learn the right variable-impedance control strategy.
Towner et al. [63] propose a planning approach that uses a
previously learned Hidden Markov Model to fold clothes.

The approaches discussed above can be thought of as methods
that capture the regularity of complex manipulation behaviors
in S × A × t by learning them via demonstration.

I. State Representation Learning

In the majority of the IP approaches, the representation of
sensory data and latent variables are prespecified based on prior
knowledge about the system and task. There are, however, some
approaches that learn these representations. Most notable are
[71], [73], and [74]. In all of them, the authors learn some
mapping from raw, high-dimensional sensory input (in this
case images) to a lower dimensional state representation. All
of these example approaches fix the structure of this mapping,
e.g., linear mapping with task-specific regularizers [71] or Con-
volutional Neural Networks [73], [74]. The parameters of this
mapping are learned from data.

V. TAXONOMY OF IP

In this section, we identify a number of important aspects
that characterize existing IP approaches. These are additional
to the two benefits of CNS and APR and independent of the
specific application of an approach. We use these aspects to
taxonomize and group approaches in Tables I and II. In the fol-
lowing, each table column is described in detail in a subsection
along with example approaches. We use paper sets to refer to
groups of similar approaches that address the same application,
e.g., either object segmentation or manipulation skill learning.
We split paper sets further into approaches that either exploit
CNS or APR. We also list papers separately that do not pursue
a unique goal, e.g., they perform both object segmentation and
recognition.

A. How is the Signal in S × A × t Leveraged?

An IP approach leverages at least one of the two aforemen-
tioned benefits: 1) it exploits a novel sensory signal that is due to
some time-varying, forceful interaction (CNS) or 2) also lever-
ages prior knowledge about the regularity in the combined space
of sensory data and action parameters over time S × A × t for
predicting or interpreting this signal (APR).

1) Commonalities and Differences Between CNS and APR:
Approaches that exploit the novel sensory signal (CNS) also
rely on regularities in the sensory response to an interaction.
In its most basic form, this regularity is usually linked to some
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Fig. 7. Spectrum of the extent to which knowledge about the APR is ex-
ploited by IP approaches. Example problems are plotted along the x-axis. Their
placement depends on how much prior knowledge about the interaction in the
environment is commonly used in existing approaches toward them. For ex-
ample, approaches toward basic visual object tracking or optical flow use very
weak priors to regularize the solution space without incorporating knowledge
about the specific interaction that caused the novel sensory response (CNS).
Similar to that, approaches toward motion-based object segmentation often rely
on interpreting a novel sensory response caused by an arbitrary interaction
(CNS). Approaches toward object pose estimation often choose an action that
is expected to provide the most informative sensory signal (APR). The wedge
shape of the graph indicates that the more an approach exploits APR, the more
prior knowledge it relies on. It also indicates that a strict classification of an
approach may not be possible in every case.

assumed characteristic of the environment that thereby restricts
the expected response of the world to an arbitrary action. Even
more useful to robust perception and manipulation is to also
include prior knowledge about the response to a specific inter-
action (APR).

Existing approaches toward IP cover a broad spectrum of how
the possibilities afforded by this combined space S × A × t are
leveraged, as visualized in Fig. 7. On the one end of the spec-
trum, there are approaches, such as visual tracking or optical
flow, that use very weak priors to regularize the solution space
while maintaining generality (e.g., brightness constancy or local
motion). In the middle, there are approaches that heavily rely
on the regularity in the sensory response to an arbitrary inter-
action (e.g., rigid body dynamics, motion restricted to a plane
or smooth motion). At the very end of the spectrum, there are
approaches that leverage both assumptions about environmen-
tal constraints and knowledge about the specific interaction, to
robustly interpret the resulting sensory signal and enable percep-
tually guided behavior. While using this kind of prior knowledge
loses generality, it may result in more robust and efficient estima-
tion in a robotics scenario due to a simplification of the solution
space. If an approach leverages APR, then it also automatically
leverages CNS.

2) Example Approaches: We start with approaches that ex-
ploit the informative sensory signal that is due to some forceful
interaction (CNS). For instance, Fitzpatrick and Metta [53] and
Kenney et al. [55] ease the task of visual segmentation and ob-
ject model learning by making some general assumptions about
the environment and thereby about the possible responses to an
arbitrary interaction performed by the robot. Example assump-
tions are that only RO are present in the scene and that mo-
tion is restricted to a plane. Although the interaction is carried
out by a robot, the available proprioceptive information is not
used in the interpretation of the signal. Katz et al. [103], Sturm
et al. [95], Pillai et al. [99], and Martı́n Martı́n and Brock [96]
aim at understanding the structure of AO by observing their
motion when they are interacted with. While objects are not

restricted to be rigid or to only move in a plane, they are re-
stricted to be piecewise rigid and to move according to some lim-
ited set of articulation mechanisms. Approaches by Bergström
et al. [44], Chang et al. [56], Gupta and Sukhatme [50],
Hausman et al. [51], [45], Kuzmic and Ude [52], and Schiebener
et al. [57] devise different heuristics for selecting actions that
generate informative sensory signals. These are used to ease
perceptual tasks, such as object segmentation or object model
learning. Similar to the above, none of the potentially available
knowledge about interaction parameters is used to predict their
effect.

The aforementioned approaches use vision as the source for
informative sensory signals. Chu et al. [42] and Culbertson
et al. [91] demonstrate how either unconstrained interactions
in a plane or fixed interaction primitives lead to novel haptic
sensory signals to ease the learning of material properties.

Other approaches utilize the regularity in S × A × t to a
much larger extent for easing perception and/or manipulation
(APR). For example, Atkeson et al. [75] estimate the dynamics
parameters of a robotic arm and the load at the end effector.
This requires a sufficient amount of arm motion, measurements
of joint torques, angles, velocities, and acceleration as well as
knowledge of the arm kinematics. We can only learn the appro-
priate model that predicts arm motion from input motor torques
if given this prior information on the structure of the space
S × A × t and data from interaction. Sinapov et al. [59], [60],
and Sinapov and Stoytchev [62] let a robot interact with a set
of objects that are characterized by different attributes, such as
rigid or deformable, heavy or light, and slippery or not. Features
computed on the different sensor modalities serve as the basis to
learn object similarity. The authors show that this task is eased
when the learning process is conditioned on joint torques and
the different interaction behaviors. They also use the knowl-
edge of the interaction in [60] and [62] to correlate various
sensor modalities in the S × A × t.

Zhang and Trinkle [76] and Koval et al. [78] track object pose
using visual and tactile data while a robot is pushing this object
on a plane. Zhang and Trinkle [76] solve a nonlinear comple-
mentarity problem within their dynamics model to predict object
motion given the control input. At the same time, they use ob-
servations of the object during interaction for estimating param-
eters of this model, such as the friction parameters. Koval et al.
[78] assume knowledge of a lower dimensional manifold that
describes the different contact states between a specific object
and hand during a push motion. Hypotheses about future object
poses are constrained to lie on this manifold. Hausman et al.
[98] and Hsiao et al. [113] condition on the action to drive the
estimation process. Hsiao et al. [113] estimate the belief state
by conditioning the observations on the expected action out-
comes. Hausman et al. [98] adopt a similar approach to estimate
the distribution of possible articulation models based on action
outcomes.

B. What Priors are Employed?

To devise an IP system means to interpret and/or deliberately
generate a signal in the S × A × t. The regularity of this signal
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can be programmed into the system as a prior incorporating
knowledge of the task; it can be learned from scratch or the
system can pick up these regularities using a mixture of both
priors and learning. Therefore, an important component of any
IP system is this regularity and how it is encoded and exploited
for performing a perception and/or manipulation task.

1) Priors on the Dynamics: IP requires knowledge of how
actions change the state of the environment. Encoding this kind
of regularity can be done in a dynamics model, i.e., the model
for predicting the evolution of the environment after a certain
action has been applied. Dependent on the number of objects in
the environment, this prediction may be very costly to compute.
Furthermore, due to uncertainty and noise in robot–object and
object–object interactions, the effects of the interactions are
stochastic.

a) Given/Specified/Engineered Priors: There are many
approaches that rely on priors, which simplify the dynamics
model and thereby make it less costly to predict the effect of an
action. Examples of commonly used priors are the occurrence of
only RO, of AO with a discrete set of links, or of only DO. An-
other prior includes the availability of a set of action primitives
(AP), such as push, pull, grasp, etc. These action primitives
are assumed to be accurately executed without failure. Many
approaches assume that object motion is restricted to a plane
(PM) or other simplifications of the scene dynamics (SD), e.g.,
quasi-static motion during multicontact interaction between ob-
jects. In this section, each prior will be explained in more de-
tail by using one or several example approaches that exploit
them.

Of the highlighted priors, some are more commonly used
than others. For instance, apart from papers in paper set (Object
Segmentation II, Object Segmentation—Object Recognition II,
and Haptic Property Estimation II) almost all other approaches
make assumptions about the nature of objects in the environ-
ment, i.e., they assume that all objects present in the environment
belong exclusively to one of three classes: rigid, articulated, or
deformable.

The majority of approaches in IP assume that the objects are
rigid (RO). Only approaches concerned with estimating an ar-
ticulation model assume the existence of AO. Similarly, [112],
[63], and [64] in paper set Manipulation Skill Learning are
unique in that they are the only ones that deal with the manipu-
lation of DO.

Many approaches in the paper set Object Segmentation I
utilize the planar motion prior (PM). In instances, such as [50],
this prior is used for scene segmentation, where all the objects in
the scene are assumed to lie on a table plane. In other approaches,
e.g., [45], [46], [51], [52], and [56] in Object Segmentation I,
[93] in Multimodal Object Model Learning I and [39], [90]
in Multimodal Object Model Learning II, the planar motion
assumption is used not only for scene segmentation, but also to
track the movement of objects in the environment.

Then, there are approaches that make additional simplify-
ing assumptions about the dynamics of the system (SD). For
instance, Koval et al. [80] assume that the object being manipu-
lated has quasi-static dynamics and moves only on a plane (PM).
Such an assumption becomes particularly useful in cases where

action selection is performed via a multistep planning procedure
because it simplifies the forward prediction of object motion.

b) Learned Priors: There are approaches that learn a dy-
namics model of the environment given an action. Some of
these let the robot learn this autonomously through trial and
error. Early approaches toward this are given by Christiansen
et al. [79], and Metta and Fitzpatrick [54], where they learn
a simple mapping from the current state and action to a most
likely outcome. Christiansen et al. [79] demonstrate this in a
tray-tilting task for bringing the object lying on this tray into a
desired configuration. Metta and Fitzpatrick [54] demonstrate
their approach in an object pushing behavior and learn the re-
sponse of an object to a certain push direction. Both of them
model the nondeterminism of the response of the object to an
action. More recent approaches are presented by Levine et al.
[67], Han et al. [68], and Wahlström et al. [73], where they learn
the mapping from current state to next best action in a policy
search framework. Lee et al. [64], Pastor et al. [65], and Kappler
et al. [66] bootstrap the search process through trial and error
by demonstrating actions.

2) Priors on the Observations: Regularities can also be en-
coded in the observation model that relates the state of the system
to the raw sensory signals. Thereby, it can predict the observa-
tion given the current state estimate. Only if this relationship
is known, an IP robot can gain information from observations.
This information may be about some quantity of interest that
needs to be either estimated or directly provide the distance to
some goal state.

a) Given/Specified/Engineered Observation Models:
Traditionally, the relationship between the state and raw sen-
sory signals is hand designed based on some expert knowledge.
One example is models of multiview or perspective geometry
for camera sensors [14], [124]. Often, approaches also assume
access to an object database (OD) that allows them to predict
how the objects will be observed through a given sensor, e.g.,
Chu et al. [42].

b) Learned State Representations: More recently, we see
more approaches that learn a suitable, task-specific state rep-
resentation directly from observations. Examples include [71],
[73], and [74], where the authors use raw pixel values as input
and learn the lower dimensional representation jointly with the
policy that maps these learned states to actions. Jonschkowski
and Brock [71] achieve this by introducing a set of hand-defined
priors in a loss function that is minimal if the state representa-
tion best matches these priors. The mapping from raw pixels
to the lower dimensional representation is linear. Levine et al.
[74] map the raw pixel values through a nonlinear convolutional
neural network (CNN) to a set of feature locations in the image
and initialize the weights for an object pose estimation task.
Both the type of function approximator (CNN encoding recep-
tive fields) and the data for initialization can be seen as a type
of prior. Wahlström et al. [73] use an autoencoder framework,
where they not only minimize the reconstruction error from
the low-dimensional space back to the original space, but also
optimize the consistency in the latent, low-dimensional space.

In the case, where the mapping between state and observa-
tion is hand designed, the state usually refers to some physical
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quantity. In the case where the state representation is learned, it
is not so easily interpretable.

C. Does the Approach Perform Action Selection?

Knowledge about the structure of S × A × t can also be ex-
ploited to select appropriate actions. A good action will reveal
as much information as possible and at the same time bring the
system as close as possible to the manipulation goal. If we know
something about the structure of S × A × t, we can perform ac-
tion selection so as to make the resulting sensor information as
meaningful as possible. The agent must balance between explo-
ration (performing an action to improve perception as much as
possible) and exploitation (performing an action that maximizes
progress toward the manipulation goal).

1) Problem Formulation: For optimal action selection, the
IP agent needs to know a policy that given the current state
estimate returns the optimal action or sequence of actions to
take. Here, optimal means that the selected actions yield a max-
imum expected reward to the IP agent. The specific definition
of the reward function heavily depends on the particular task
of the robot. If it is a purely perceptual task, actions are often
rewarded when they reduce the uncertainty about the current
estimate (exploration), e.g., van Hoof et al. [47]. If the task is
a manipulation task, actions may be rewarded that bring you
closer to a goal (exploitation), e.g., Levine et al. [67].

Finding this policy is one of the core problems for action
selection. Its formalization depends on whether the state of the
dynamical system is directly observable or whether it needs to be
estimated from noisy observations. It also depends on whether
the dynamics model is deterministic or stochastic.

2) Dynamics Model: Knowing the dynamics model is even
more important for action selection than for improving percep-
tion. It allows us to predict the effect of an action on the quan-
tity of interest and thereby the expected reward. A common
way to find the optimal sequence of actions that maximizes re-
ward under deterministic dynamics is forward or backward value
iteration [125].

As mentioned earlier, a realistic dynamics model should be
stochastic to account for uncertainty in sensing and execution.
In this case, to find the optimal sequence of actions, the agent
has to form an expectation over all the possible future outcomes
of an action. The dynamical system can then be modeled as an
Markov Decision Process (MDP). Finding the optimal sequence
of actions can be achieved through approaches, such as value or
policy iteration [126].

In an MDP, we assume that the state of the system is di-
rectly observable. However, in a realistic scenario, the robot can
only observe its environment through noisy sensors. This can be
modeled with a Partially Observable Markov Decision Process
(POMDP) where the agent has to maintain a probability distri-
bution over the possible states, i.e., the belief, based on an ob-
servation model. For most real-world problems, it is intractable
to find the optimal policy of the corresponding POMDP. There-
fore, there exist many methods that find approximate solutions
to this problem [127].

Predictive State Representations (PSRs) are another formal-
ism for action selection. Here, the system dynamics are rep-

resented directly by observable quantities in the form of a set
of tests instead of over some latent state representation as in
POMDPs [128]–[130].

3) Planning Horizon (PH): Action selection methods can
be categorized based on the number of steps they look ahead in
time. There are approaches that have a single-step look ahead,
which are called myopic or greedy (M). Here, the agent’s ac-
tions are optimized for rewards in the next time step, given the
current state of the system. Most approaches to IP which exploit
the knowledge of the outcome of an action in S × A × t are
myopic (M). Myopic approaches do not have to cope with the
evolution of complex system dynamics or observation models
beyond a single step. Hence, this considerably reduces the size
of the possible solution space. Examples of such approaches
can be seen in paper sets Object Segmentation II [98], [101], in
Articulation Model Estimation II [36] and in the paper set Pose
Estimation.

Then, there are approaches that look multiple steps ahead in
time to inform their action selection process. These multistep
look-ahead solutions decide an optimal course of action also
based on the current state of the system. The time horizon for
these multistep look aheads can either be fixed or variable. In
either case, the time horizons are generally dictated by a budget,
examples of which include computational resources, uncertainty
about the current state, costs associated with the system, etc. For
instance, a popular multistep look-ahead approach relies on the
assumption that the maximum-likelihood estimate (MLE) obser-
vation will be obtained in the future. This way, one can predict
the behavior of the system within the time horizon and use it
to select an action. Overall, we label such approaches to ac-
tion selection as PH approaches. Examples of these approaches
include [81] and [83].

Another set of methods tries to find global policies (GP)
that specify the action that should be applied at any point in
time for any state. We categorize such approaches as meth-
ods that have GP. Among these, there are approaches that take
into account all possible distributions over the state space (be-
liefs) and offer globally optimal policies. These policies ac-
count for stochastic belief system dynamics, i.e., they main-
tain probabilities over the possible current states and proba-
ble outcomes given an action. Such methods are often solved
by formulating them as POMDPs. In practice, the solution to
such problems is intractable and are often solved by approxi-
mate offline methods. Javdani et al. [36] and Koval et al. [80]
demonstrate such an approach to action selection for IP. An-
other way of finding GP uses reinforcement learning that pro-
vides a methodology to improve a policy over time. An example
of a specific policy search method is presented in [67], [68],
and [74].

Apart from planning-based approaches that perform action
selection, there are approaches that focus on low-level control.
In these approaches, the control input is computed online for the
next cycle based on a global control law. We also classify these
methods as GP approaches as they compute the next control
input based on control law that is global, e.g., the feedback
matrix in linear Gaussian controllers. The actions are generated
at a high frequency and operate on low-level control commands.
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Examples of these approaches include [37], [84], [87], [94],
and [102].

4) Granularity of Actions: Action selection can be per-
formed at various granularities. For example, a method may
either select the next best control input or an entire high-level
action. The next best controls can be low-level motor torques
that are sent to the robot in the next control cycle. The cor-
responding action selection loop is executed at a very high
frequency and is dependent on the immediate feedback from
different sensors [37], [84], [87], [94], [102].

High-level action primitives are generally used in approaches
that do not require reasoning about fine motor control, such
as pushing or grasping actions that are represented by motion
primitives. In such cases, reasoning about observations is purely
dependent on the outcome of high-level actions. There are nu-
merous approaches that utilize high-level actions for IP. Exam-
ples are [100] and the following in paper set Object Segmenta-
tion I: [44], [53], [54], [55], [95], [99], and [96].

D. What is the Objective: Perception, Manipulation, or Both?

Approaches to IP may pursue a perception or a manipulation
goal and in some cases both (see Fig. 4). Object segmenta-
tion, recognition and pose estimation, multimodal object model
learning, and articulation model estimation are examples of
areas where IP is utilized to service perception.

Then, there are IP approaches whose primary objective is to
achieve a manipulation goal (e.g., grasping or learning manipu-
lation skills). For instance, Pastor et al. [65] and Kappler et al.
[66] exploit regularities in S × A × t to enable better action se-
lection. The robot compares the observed perceptual signal with
the expected perceptual signal given the current manipulation
primitive. It then picks controls that drive the system toward
the expected signal. Similarly, Koval et al. [78], Kaelbling and
Lozano-Pérez [81], and Platt et al. [83] exploit the regularities
in S × A × t to facilitate task oriented grasping, i.e., locate and
grasp an object of interest.

The final thread of IP approaches include a combination of
both perception and manipulation. For instance, Koval et al.
[80] and Dragiev et al. [87] simultaneously improve percep-
tion (object model reconstruction or pose estimation, respec-
tively) and select better actions under uncertainty (efficient
grasping). In [94], [102] in paper set Articulation Model Es-
timation II, the knowledge about the regularity in both the ob-
servations and dynamics in S × A × t is used to improve the
articulation model estimation as well as to enable better con-
trol. In the case of [102], the control input is directly incor-
porated into the state estimation procedure. In contrast, Jain
and Kemp [94] use the position of the end effector in the
articulation mechanism estimation. The manipulation goal in
both these approaches is to enable a robot to open doors and
drawers.

E. Are Multiple Sensor Modalities Exploited?

Some approaches exploit multiple modalities in the S × A ×
t space, whereas other approaches restrict themselves to a single

informative modality. The various sensing modalities can be
broadly categorized into contact and noncontact sensing. Ex-
amples of noncontact sensing include vision, proximity sensors,
sonar, etc. Contact sensing is primarily realized via tactile sen-
sors and force–torque sensors. Approaches that only use tactile
sensing include the works of Chu et al. [42], Koval et al. [78],
[80], and Javdani et al. [36]. There are also approaches that
use both contact and noncontact sensing to inform the signal in
the S × A × t space. These include some of the works listed in
paper sets Articulation Model Estimation II, Pose Estimation—
Object Dynamics Learning II, Multimodal Object Model Learn-
ing I and II, and Manipulation Skill Learning in Tables I and II.

F. How is Uncertainty Modeled and Used?

In IP tasks, there are many sources of uncertainty about the
quantity of interest. One of them is the noisy sensors through
which an agent can only partially observe the current state of the
world. Another is the dynamics of the environment in response
to an interaction. Some approaches toward IP model this uncer-
tainty in either their observations and/or the dynamics model of
the system. Depending on their choice, there are a wide variety
of options for estimating the quantity of interest from a signal in
S × A × t. For updating the current estimate, some approaches
use recursive state estimation and maintain a full posterior dis-
tribution over the variable of interest, e.g., [76], [78], and [96].
Others frame their problem in terms of energy minimization in
a graphical model and only maintain the maximum a posteriori
(MAP) solution from frame to frame, e.g., [44]. An MLE of the
variable of interest is computed in approaches that do not main-
tain a distribution over possible states. Examples are clustering
methods that assign fixed labels [45], [50], [51], [56] to the vari-
able of interest. More recently, nonparametric approaches have
also been utilized. For instance, Boularias et al. [86] use kernel
density estimation.

Methods that model uncertainty of the variable(s) of interest
can cope better with noisy observations or dynamics, but they
become slower to compute as the size of the solution space
grows. This creates a natural tradeoff between modeling uncer-
tainty and computational speed. The above-mentioned choices
also have implications for action selection. If we maintain a
full distribution over the quantity of interest, then computing
a policy that takes the stochasticity in the dynamics and ob-
servation models into account is generally intractable [125]. If
an approach assumes a known state, the dynamical system can
also be modeled by an MDP with stochastic dynamics given an
action. The least computationally demanding model for action
selection is the one that neglects any noise in the observations or
dynamics. However, it might also be the least robust depending
on the true variance in the real dynamical system that the agent
tries to control.

Based on the above, we propose four labels for IP approaches
with respect to their way of modeling and incorporating
uncertainty in estimation and manipulation tasks. Approaches
that assume deterministic dynamics are labeled (DDM),
stochastic dynamics (SDM), deterministic observations (DOM),
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stochastic observations (SOM), and approaches that estimate
uncertainty are labeled (EU).

Fitzpatrick and Metta [53], Metta and Fitzpatrick [54], and
Kenney et al. [55] propose example approaches that assume
no stochasticity in the system, and model both the dynamics
and observations deterministically. Then, there are approaches
that assume deterministic observations but do not model the
dynamics at all. These are listed in paper set Object Segmen-
tation I that include the works of Chang et al. [56], Gupta and
Sukhatme [50], Hausman et al. [51], [45], Kuzmic and Ude [52],
and Schiebener et al. [46]. Then, there are approaches that model
only stochastic observations but no dynamics because they as-
sume that the environment is static upon interaction, e.g., [84].
Most approaches that assume both stochastic dynamics and ob-
servations have some form of uncertainty estimation technique
implemented to account for the stochasticity in the system. An
approach that assumes stochasticity in its observations but does
not estimate uncertainty is given by Chu et al. [42]. Here, the au-
thors train a max-margin classifier to assign labels to stochastic
observations.

VI. DISCUSSION AND OPEN QUESTIONS

A. Remaining Challenges

If IP is about merging perception and manipulation into a
single activity then the natural question arises of how to balance
these components. When have manipulation actions (that are
in service of perception) elicited sufficient information about
the world such that manipulation actions can succeed that are
in service of a manipulation goal? This question bears sig-
nificant similarities with the exploration/exploitation tradeoff
encountered in reinforcement learning. One can further ask:
How can manipulation actions be found that combine these two
objectives—achieving a goal and obtaining information—in
such a way that desirable criteria about the resulting sequence
of actions (time, effort, risk, etc.) are optimized?

When performing manipulation tasks, humans aptly com-
bine different sources of information, including prior knowledge
about the world and the task, visual information, haptic feed-
back, and acoustic signals. Research in IP is currently mostly
concerned with visual information. New algorithms are nec-
essary to extend IP toward a multimodal framework, where
modalities are selected and balanced so as to maximally inform
manipulation with the least amount of effort, while achieving a
desired degree of certainty. Furthermore, for every sensory chan-
nel, one might differentiate between passively (e.g., just look),
actively (e.g., change vantage point to look), and interactively
(e.g., observe interaction with the world) acquired information.
Each of these is associated with a different cost but also with
a different expected information gain. In addition to adequately
mining information from multiple modalities, IP must be able
to decide in which of these different ways the modality should
be leveraged.

Also, at the lower levels of perception significant changes
might be required. It is conceivable that existing represen-
tations of sensory data are not ideal for IP. Given the fo-

cus on dynamic scenes with multiple moving objects, occlu-
sions, lighting changes, and new objects appearing and old ones
disappearing—does it make sense to tailor visual features and
corresponding tracking methods to the requirements of IP? Are
there fundamental processing steps, similar to edge or corner
detection, that are highly relevant in the context of IP but have
not seen a significant need in other applications of Computer
Vision? The same for haptic or acoustic feedback: When com-
bined with other modalities in the context of IP, what might be
the right features or representations we should focus on?

B. Framework for IP?

All of the aforementioned arguments indicate that IP might
require a departure from existing perception frameworks, as they
can be found in applications outside of robotics, such as surveil-
lance, image retrieval, etc. In IP, manipulation is an integral
component of perception. The perceptual process must contin-
uously tradeoff multiple sensor modalities that might each be
passive, active, or interactive. There is no stand-alone percep-
tual process and not only a single aspect of the environment that
must be extracted from the sensor stream as the optimization
objectives may change when the robot faces different tasks over
its lifetime.

After the review of existing work in the field, we conclude
that there is yet no framework that can address all the chal-
lenges in IP. There are, however, candidates that represent the
regularity in S × A × t in a way that caters to a particular chal-
lenge encountered in IP. For instance, Krüger et al. [131] present
a concept that allows us to symbolically represent continuous
sensory-motor experience: Object-Action Complexes. The con-
cept’s current instantiations through the examples in [131] are
focused on learning and detecting affordances [1], which de-
scribe the relationship between a certain situation (often includ-
ing an object) and the action that it allows.

Other popular formalisms lend themselves particularly well
to the problem of optimal action selection (see Section V-C).
Examples include MDPs, POMDPS, PSRs, or multiarmed ban-
dits. They rely on different assumptions (e.g., Markov assump-
tions, observable state) and make different algorithmic choices
(e.g., probabilistic modeling). Approaches that rely on these
decision-making frameworks often assume the availability of
transition, observation, and reward functions and the possibility
to analytically compute the optimal action.

For complex real-world problems this is often not the case
and information about the world can only be collected through
interaction. The data collected in this way are then used to
update the relevant models. The problem of selecting the next
best action may be based on submodularity [36], the variance in
a Gaussian Process [37], [39], or the Bhattacharyya coefficient
between two normal distributions [40], [41].

Reinforcement learning [126] is also a common choice to
learn a policy for action selection under these complex condi-
tions. Many approaches assume the availability of some reliable
state estimator (e.g., by using motion capture or marker-based
systems) where the state is of relatively low dimension and hand
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